Step of Proof: member_nth_tl
11,40
postcript
pdf
Inference at
*
2
1
1
2
I
of proof for Lemma
member
nth
tl
:
1.
T
: Type
2.
n
:
3. 0 <
n
4.
x
:
T
,
L
:(
T
List). (
x
nth_tl(
n
- 1;
L
))
(
x
L
)
5.
T
6.
T
List
7.
n
:
. nth_tl(
n
;[]) = []
nth_tl(
n
;[]) = []
latex
by MaAuto
latex
.
Definitions
,
[]
,
nth_tl(
n
;
as
)
,
n
-
m
,
(
x
l
)
,
,
{
x
:
A
|
B
(
x
)}
,
A
,
False
,
P
Q
,
Void
,
type
List
,
a
<
b
,
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
,
Type
,
#$n
,
A
B
,
s
=
t
,
t
T
Lemmas
le
wf
origin